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Coloring and its applications

* Graph coloring is an abstraction for
partitioning a set of binary-related objects
into few “independent sets”

* Coloring contributed to the growth of

much of Graph Theory GRAPH
COLORING BGHROMATIC

PROBLEMS NG RAPH
L T G EORY

*  Our work on coloring is motivated by its
practical applications:

— Concurrency discovery in parallel
(scientific) computing

— Sparse derivative matrix
computation

— Scheduling

— Frequency Assignment
— Facility Location

— Register Allocation, etc



Graph coloring in concurrency discovery
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Coloring models in derivative computation: overview

4-step procedure for computing a | A o SL _ B i
sparse derivative matrix A using B ’
Automatic Differentiation:

 S1: Determine the sparsity structure of A
» S2: Obtain a seed matrix S by coloring the graph of A

* $3: Compute a compressed matrix B=AS

* $4: Recover entries of A from B

distance-2 coloring star bicoloring
star coloring NA

NA acyclic bicoloring

acyclic coloring NA
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Distance-2 coloring:
an archetypal model in direct methods
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Coloring models in derivative computation revisited

distance-2 coloring star bicoloring
G, Manne and Pothen (05) Coleman and Verma (98)

Hossain and Steihaug (98)

star coloring NA
Coleman and More (84)

restricted star coloring*
Powell and Toint (79)

NA acyclic bicoloring
Coleman and Verma (98)

acyclic coloring NA
Coleman and Cai (86)

triangular coloring*
Coleman and More (84)

* Less accurate models Jacobian: bipartite graph
Hessian: adjacency graph

ColPack

www.cscapes.org/coloringpage

SIAM Review 47(4):629—705, 2005.
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An Example Application



Principle of Chromatography

Desorbent Feed

(Water, organic  (Mixture of red and blue

solvent, etc)

components

Red component sticks more strongly
to adsorbent particles

/

Pump Chromatographic column

Packing medium
(adsorbent partlcles)

Blue Red

component component
http://www.cwg.hu/english/r-wtcomp.html

Figure courtesy of
Yoshiaki Kawajiri, GT




Simulated Moving Bed process

A psuedo counter-current process
that mimics operation of TMB

* Reaches only Cyclic Steady State

* Various objectives to be maximized

could be identified
E.g: product purity, product recovery,
desorbent consumption, throughput

* We considered throughput
maximization

* Objective modeled as an optimization
problem with PDAEs as constraints

* Full discretization was used to solve
the PDAEs =» sparse Jacobians

Extract

Direction of liquid flow

and valv

switching

Raffinate

Desorbent



Results on Jacobian computation on SMB problem

« Tested efficacy of the 4-step procedure:

. seed
sparsity . matrix-vector
detection (S1) gen(esrza)‘u o product (S3) recovery (S4)

» Used ADOL-C for steps Sland S3, and ColPack for
steps S2 and S4

* Observed results for each step matched
analytical results

* Technigues enabled huge savings in runtime

Time(Jacobian eval) = 100xTime(function eval)

* Dense computation (without exploiting sparsity)
was infeasible

G, Pothen and Walther: AD2008.
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Complexity and algorithms

* Distance-k, star, and acyclic coloring are NP-hard (to even approximate)

— Distance-1 coloring hard to approximate to within n{%¢ for all e>0 [Zuckerman’07]

* A greedy algorithm usually gives good solution

GREEDY(G=(V,E))
the vertices in V
fori=1to [V/ do

Determine colors to v,

Assign v; the color

[Update collection of induced subgraphs]
end-for

e ColPack has

— O(|V]d,)-time algorithms for distance-k coloring (d, is average degree-k)

— O(|V|d,)-time algorithms for star and acyclic coloring

Key idea: exploit structure of



Ordering techniques in ColPack:
fresh formulation

Ordering Property

fori=1ton:
v; has largest degree in V\{v,, v,,..., v}

fori=1ton:
v; has largest back degree in V\{v,, v,,..., v}

fori=1ton:
v; has largest forward degree in V\{v,, v,,..., v}

fori=nto1:
v; has smallest back degreein V\{v,, v, ;,..., vy}

Back degree Forward degree Formulation enables:
- o ‘
* modular imp.
* linear time imp.
Vi|V2 Vi Vo-1| Yo * discovery of use in
other contexts
- -




Parallelization...
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Challenges in parallelization in general
(on contemporary platforms)

 Parallel Architectural Models?

— Control mechanism; address space (memory)
organization; interconnection network; etc

* Parallel Programming Models?

— Shared memory; distributed memory; massive
threading; etc

* Parallel Computational Models?
— Wish: realistic yet reasonably simple abstractions



Challenges in parallelizing graph algorithms

* Low available concurrency
* Poor data locality

* Irregular memory access pattern
* Access pattern determined only at runtime
* High data access to computation ratio



Parallel Coloring Algorithms

Independent-set based (previous approaches)

— Find maximal independent set in parallel (Luby’s algorithm)
— Limited (or no) success

Iteration and speculation

Iterative Algorithm (G=(V,E))
Order Vin parallel
u=Vv
while U is not empty
1. Speculatively color vertices in U in parallel;
2. Check consistency of colors in U in parallel, store conflicts in R;
U =R;

Dataflow
— Fine-grain (edge-level) synchronization; no iteration
— Feasible when there is HW support for FGS (like the Cray XMT)
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Enhancing the Iterative Algorithm

* Color choice
— First Fit
— Staggered First Fit
— Least Used
— Random

* Resolving a conflict
— Randomization



Ordering is inherently sequential
Remedy: approximation

(a)
lllustration: Buckets| | [ 2 [ 3 | 4 Buckets| | | 2 [ 3 |4
. cle | mmemmes | C g
Candidate
Smallest Last Candidate | £ | P h| Kk
s eesesas - k
ordering .
(b) (d)
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"""" -~ d i d|i
Candidate -
c ] e
1 Candidate] !
....... -1

(¢) (e)
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Experimental Results on
Parallel Performance
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Test platforms

Intel Nehalem Sun Niagara 2 Cray XMT

(a‘ TTTTT o |[om o |[om . m @ HHHHHH B B m / \ /
0‘1‘2‘3‘4‘5‘5‘7 0‘1‘2‘3‘4‘5‘6‘7 0‘1‘2‘3‘4‘5‘5‘7 0[1]2|3|4|5(6|7| 0123455‘7 0]1|2/3[4{5|6/7|
Core-0 Core-1 Core-2 Core-3 Core-0 Core-1 Core-2 Core-3 Processor- 0 Processor- 1 P N
Licache || L1Cache || LiCache || L1cache L1Cache || L1Cache || LicCache || L1cache Core-0 Core-l  |eee | Core7 Core-0 Core-l  |ees | Core7
L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache
| 8x9 Cache Crossbar | | 8x9 Cache Crossbar |
Shared L3 Cache Shared L3 Cache T T T T T T T T t t
| Shared L2 Cache (8 Banks) | | Shared L2 Cache (8 Banks) | + +
{ 1 { 1 3 3 3 T 3 T T T : :
Memory QP > QP Memory Memory Memory Memory Memory Memory Memory Memory Memon : :
Controller | Controller il Controller || controller || controller Controller || Controller || controler || controller h h
I I
[ : | 3D Torus Network : | J
T T T T T T
| | I | | |
v v v v A, A, A, A, v A, v | v | v |
( . )
[ Shared Global Memory } Shared Global Memory ! Shared Global “Virtual” Memory (8 GBytes X N) !
i With hardware shuffling at 64 Bytes granularity ‘\

= two quad-core chips = two 8-core sockets = 128 processors

= two hyperthreads = 8 hardware threads = 128 hardware thread streams
per core per socket per processor

= private L1 and L2 cache, = L1 cache on core, = cache-less, globally accessible
shared L3 cache shared L2 cache shared memory

= hardware support for fine-grain
synchronization



Test graphs

Name \4 |E| A | Name \4 | E| A
sc2 (bone010) 986,703  35339,811 80 | gl 131,072 1,046,384 407
sc3 (af.shelll0) 1,508,065 25,582,130 34 | g2 262,144 2,093,552 558
sc6 (kkt power) 2,063,494 6,482,320 95 | g3 524288 4,190,376 618
sc7 (nlpkkt120) 3,542,400 46,651,696 27 | g4 1,048,576 8,382,821 802
sc8 (erl) 16,777,216 134,217,651 138 | gb 2,097,152 16,767,728 1,069
sc9 (nlpkkt160) 8,345,600 110,586,256 27 | g6 4,194,304 33,541,979 1,251
erl 131,072 1,048,515 82 | bl 131,072 1,032,634 2,980
er2 262,144 2,097,104 98 | b2 262,144 2,067,860 4,493
er3 524,288 4,194,254 94 | b3 524,288 4,153,043 6,342
erd 1,048,576 8,388,540 97 | b4 1,048,576 8,318,004 9,453
erd 2,097,152 16,777,139 102 | b5 2,097,152 16,645,183 14,066
eré 4,194,304 33,554,349 109 | b6 4,194,304 33,340,584 20,607

sc : graphs from scientific computing apps
er : R-MAT (0.25, 0.25, 0.25, 0.25)
g : R-MAT (0.45, 0.15, 0.15, 0.25)
b : R-MAT (0.55, 0.15, 0.15, 0.15)



Distance-2 coloring: # colors
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Distance-2 coloring: # colors

1zeer .

1ocer B = Threads
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time / time using 1 thread (%)

Distance-2 coloring: runtime
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time /time using 1 thread (%)
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Distance-2 coloring: runtime
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Distance-1 coloring: # colors
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Cray XMT

Niagara 2
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Distance-1 coloring : runtime
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Iterative: looking inside
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A “generic” parallelization technique?

* “Standard” Partitioning

— Break up the given problem into p independent subproblems of
almost equal sizes

— Solve the p subproblems concurrently

* “Relaxed” Partitioning

— Break up the problem into p, not necessarily entirely
independent, subproblems of almost equal sizes

— Solve the p subproblems concurrently
— Detect inconsistencies in the solutions concurrently
— Resolve any inconsistencies

Can be used potentially successfully if the resolution in the fourth
step involves only local adjustments
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